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SUMMARY

‘An analysis is made of the sound produced by low Mach number
turbulent flow over an asymmetrically rounded trailing edge of an
airfoil. Such airfoils are used in experimental studies of
trailing edge noise and vortex shedding phenomena, and have a
flat pressure side and a rounded, or “beveled', suction surface
at the trailing edge, so that in the immediate vicinity of the
edge the airfoil has a wedge shaped profile. There are two
principal interaction noise sources: a lift dipole associated
with the unsteady transverse forces exerted on the airfoil, and a
thickness dipole which radiates preferentially in the plane of
the airfoil. The latter is usually negligible except possibly at
low frequencies, and at large included angles of the trailing
edge wedge. Detailed results are given for included angles of
90°.and less. It is concluded that, for given turbulence
intensity, surface beveling has a significant effect on the
radiation only at sufficiently high frequencies that the trailing
edge may be regarded as a straight-sided wedge over distances of
the order of the turbulence length scale,
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1. INTRODUCTION

Sound is produced when turbulence is convected in mean flow
over the trailing edge of an airfoil [1-4). The strength of the
radiation is governed by the relative magnitudes of the
turbulence length scale and the radius of curvature of the edge,
such that for given turbulence intensity, it attains a maximun
when the turbulence scale is large relative to the thickness of
the edge. An edge of blunted or rounded profile cannot always be
used to reduce trailing edge noise, however, because of the
tendency of the flow to separate and produce increased turbulence
levels. 1In addition, separation is often accompanied by the
quasi-periodic shedding of large spanwise vortices, which are
coherent over distances equal to several edge thicknesses, and
can induce harmful, large amplitude structural vibrations
together with a strong tonal component of the radiated sound
("hydrofoil singing"™) [5].

Blake and co-workers [5,6] have undertaken extensive
experimental investigations to clarify the role of trailing edge
geometry on singing, structural vibration and the broadband
radiated sound. Of particular interest in these studies is the
configuration depicted in Figure 1, in which the trailing edge is
asymmetrically “"beveled", i.e., such that the suction side of the
airfoil is rounded at the trailing edge and intersects a plane
pressure side at a finite included angle ®. Separation does not
occur provided 8 is less than about 30°, except possibly at very
high mean flow velocities. Although the edge is sharp, it might
be expected that the intensity of the edge noise will be reduced
compared to that produced by an edge of zero included angle,
provided the frequency is large enough that the edge may be
regarded as a straight-sided wedge of angle ® over distances of
the order of the turbulence length scale (c.f., [7]).
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In this paper a theoretical investigation is made of the
influence of asymmetric beveling on the broadband component of
the edge noise produced by turbulent boundary layer flow over the
trailing edge region. The analysis is performed for included
angles in the range 0 ¢ @ ¢ 90°. Periodic vortex shedding will
in practice occur at the larger values of 9, but this will not be
discussed explicitly. 1In a first approximation its influence
will be to contribute an additional tonal peak to the broadband
spectrum of the predicted radiation. The results are used to

C PR

deduce a simple formula which provides the correction due to
beveling of the trailing edge noise that would be predicted for
the ideal case of an airfoil modeled by a flat plate of
infinitesimal thickness [4].

"y - o By

The edge noise can be ascribed to a distribution of dipole

PRI - e

sources on the surface of the airfoil whose axes are in the
direction of the local normal to the surface. 1In the case of an ¥
airfoil of finite thickness some of these dipoles are aligned
with the mean flow, into which direction they radiate preferen-
tially. This thickness effect is absent in the conventional

e -

theory of trailing edge noise [4]), which associates the principal
sources of sound with dipoles orientated at right angles to the
flow, i.e., to fluctuations in the lift of the airfecil. For an ‘
asymmetrically beveled edge it will be shown that the thickness
component of the radiation is likely to be significant only for
large values of the included angle ®, and when the thickness of :
the turbulent boundary layer at the trailing edge is greater than .
that of the airfoil. Detailed analytical results will be worked X
out for a two-dimensional airfoil of compact chord. The modifi- .
cations necessary for dealing with a non-compact airfoil are
briefly summarized. 1In both cases the Kutta condition, that the )
unsteady pressure and velocity should be finite at the sharp edge "
of the airfoil, is imposed.
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In Section 2 the aerodynamic sound problem is formulated and
solved by use of a Green's function for an airfoil of compact
chord. The analytical structure of the Green's function for
sources in the vicinity of the rounded trailing edge is
determined in Section 3. Sections 4 through 6 then treat the
particular case of turbulence noise sources in the boundary layer
on the pressure side of the airfoil. The convection of
turbulence into the trailing edge region causes additional
vorticity to be shed from the edge, the magnitude of which is
estimated in Section 5 by application of the unsteady Kutta
condition. The shed vorticity also generates sound, and fornulae
for the net acoustic radiation are obtained in Section 6.

In Section 7 the general case of arbitrary turbulent flow
over the trailing edge is briefly discussed, including the
influence of separation and periodic vortex shedding, and the
modifications necessary for dealing with an airfoil of non-
compact chord.

SEPARATION
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PIGURE 1. TURBULENT BOUNDARY LAYER FLOW OVER AN ASYMMETRICALLY
BEVELED TRAILING EDGE. SEPARATION OCCURS TYPICALLY
FOR 8 > 30°.
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2. THE AERODYNAMIC SOUND PROBLEM
2.1 Formulation and General Solution

Consider the generation of sound by high Reynolds number,
low Mach number mean flow over the two-dimensional rigid airfoil
illustrated in Figure 2. The fluid has mean density Por sound
speed c, and main stream velocity U in the positive x,-direction
of the rectangular coordinate system (x,,x,,x,), where M = U/c <<
l. The airfoil has chord 2a and, except in the vicinities of the
leading and trailing edges, uniform thickness s, and is set at
zero angle of attack to the mean flow. The npper ("suction") and
lower ("pressure") surfaces of the airfoil are defined
respectively by

X, = o(xl) >0,

X =—0 ’

2

where the origin of coordinates is taken at O at the trailing

edge, and the x,-axis is directed out of the plane of the paper

3
in the figure.

The boundary layers on the surfaces of the airfoil are
assumed to become turbulent towards the trailing edge (and
separation may also occur), and it is required to determine the
sound produced by diffraction when the hydrodynamic turbulence
pressure field is swept past the trailing edge region by the mean
flow. The formal solution of this problem is determined by that
of the inhomogeneous wave equation

[32/c23t2 - v2}B = QO(x,t)

(2.2)
O(x,t) = div(uw*v) ,
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provided the Mach number M is sufficiently small that convection
of sound by the mean flow can be neglected [8]. In this eqguation
t denotes time and B is the perturbation stagnation enthalpy

B = p/"o + lz(vz-uz) ' (2.3)

where v is the velocity, w = curl v is the vorticity, and p the
perturbation pressure. Sound generation by the flow is
associated with those regions in which w # 0. It follows from
the momentum equation

3v/3t + VB = -uw'v , (2.42)
that elsewhere in the flow we can write
B = =-3¢/3t, (w = 0) , (2.4b)

where V¢ is equal to the perturbation velocity. 1In particular,
B = p/p, in the acoustic far field when M << 1.

Equation (2.2) is used to express B in terms of the vortical
source Q, whose properties are assumed to be known or easily
determined. This can be effected by introducing a Green's func-
tion G(x,y,t,t), which is the solution of (2.2) when the right
hand side is replaced by the impulsive point source §(x-y)é(t-1).
It must satisfy the radiation condition of outgoing waves at
large distances and have vanishing normal derivative aG/axn on
the surface of the airfoil. Routine application of Green's
theorem [9] then yields

B = [ O(y,t)G(x,y,t,t)d3ydr , (2.5)

where the volume integral with respect to y is taken over the
region occupied by the fluid.
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PIGURE 2. CONFIGURATION OF THE AERODYNAMIC SOUND PROBLEM.

In flow of very small Mach number the wavelength of the
turbulence generated sound is much greater than the chord 2a of
the airfoil, and to simplify the present discussion this will be
assumed to be the case. Necessary modifications to deal with the
non-compact airfoil are sketched~in in Section 7. 1In these
circumstances, the radiation received at x in the acoustic far
field is determined by the low frequency or compact form of the

Green's function [8] given by
1
G(X,yotst) = o §{t-t-|x-¥|/c} , (2.6)
where
®
Y=Y.+’(X)' i=1'21
17 1 (2.7)
Y3 = y3
6
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and 0;(1) ] ¢;(y1,y2) is a solution of Laplace's equation 720; =
0, which vanishes at large distances from the airfoil, and is
such that the normal derivative aYi/ayn = 0 on the surface of the
airfoil. Accordingly, Y;(y) may be interpreted as the velocity

2B ¥ s Y B

potential of incompressible, irrotational flow past the airfoil
which has unit speed in the i-direction at large distances from
the airfoil. The approximation (2.6) is appropriate provided

¥ .,
Aol o

.

b

L TN

that the principal components of the radiation arise from the
interaction of the turbulence with the airfoil, which is the case

S

at low Mach number [10].

| ol

2.2 The Lift and Thickness Components of the Diffraction
Radiation

s
Salal

Since B = p/po in the acoustic region, equations (2.5),
(2.6) imply that

e
A

Qly.t - |5-_¥]/c)d3x
|x-¥]

To use this result to calculate the spectral characteristics of

. (2.8)

4
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the radiation it is convenient to introduce a Fourier integral

s
[ e

representation of p. The Fourier transform ﬁ(xz,ﬁ,w) of p(x,t)

v"

o satisfies the following reciprocal relations };
z - R
- 1 =i(kex=uwt) N

{( p(X2 lhlw) = ‘(_2“—)'3‘ f P(i,t)e —_— dxldxadt ’ !-
B - (2.9a,b) o
- £ (ke x-ut) ]
. - - e X=w Lo
:\:E, p(i't) = I p(xz,h,w)e -_— dkldk3dw ’ -_:‘\1
-gn ?.~"
y where the wavenumber vector k = (k,,0,k,) has components k,, k, ‘-
.l L
’s respectively conjugate to x,,X,. o
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Taking the Fourier transform of (2.8) and using the identity

A S

ko 1x-Y] e exp{ilke(x-Y) + ¥(k)|x,-¥,|1}d2k

i
!! ——TE;ET—— 5 {. Ty (2.10)

@ where ko = w/c is the acoustic wavenumber (in terms of which
sound of radian frequency w has wavelength Zw/ko), and

ﬁ y(k) = sgn(ko)lkg-k2|1/2' i|ké-k2|1/2 according as k = |k| |k0|,

= we find

~

" |
- _ i - i{Key-keY+y (k) |x,-Y,]|}

: Plxgikre) /oy = gozyey I Oz Kewden =2 = 22l eryek

e

- |, + =, (2.11)
where 6 is defined in terms of Q as in (2.9). Observe that

% O(y2,K,w) is well defined for arbitrary values of y,;, since

O(y,t) = 0 within the region occupied by the airfoil.

R

To fix ideas, consider, without loss of generality, the
radiation into the region x, > 0 above the airfoil. The pressure

% fluctuations in the acoustic far field are determined by the
] Fourier components ﬁ(xz,g,w) which lie in the acoustic domain
? k < Ikol. By hypothesis kgya << 1, and it therefore follows that,
e
¥ for turbulence vorticity fluctuations which are confined to the
~; immediate neighborhood of the airfoil, the following approxi-
~ mation may be introduced in the integrand of (2.11):
2 -i{ke¥Y+y(k)Y,} —ikey *
S e =~ 2! = e "= -{l-iklol-iy(k)Yz} ' (2.12)
f so that (2.11) may be case in the form
. -~ 2 -~
N P(x;,ks0) = § p_(xp.ku) (2.13)
h )
. n=0
')
8
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where

pO(XZ'E'”)/DO = TR J Q(YZ'E'“)dyz ' (2.14)

- kel T * L i(Ky=k, )y

Py (Xyekow)/p ) = —py— | QlypuRyskgewde,(yle 1 71701 dy,dy ek,
(2.15)

iy (k)x
- e 2 - i(K,=k,)
Py (x3/ksw)/o = yp ] Oly, Kyrkgsw)¥,(yle” 1 71 Y1 dy,dy,dK,.

(2.16)

The component ;o(xz'f'”) determines the "quadrupole"
radiation generated by the turbulent flow when the influence of
the airfoil is ignored, the intensity of which is known to be
proportional to p°U3M“. The components ﬁl,ﬁz represent the sound
produced by dipole sources induced on the surface of the airfoil
by the unsteady flow and first identified in this context by
Curle [10]. The intensity of the dipole sound varies as poU3H3
and must dominate the radiation field when M << 1. The contribu-
tion from the quadrupoles will be discarded. It will become
clear from the ensuing discussion that the radiation fields
p1(x,t), pp(x,t) respectively correspond to dipoles whose axes
are aligned with the direction of the mean flow and with the X,
direction normal to the flow, and that P, = 0 when the airfoil
thickness s = 0. They will henceforth be designated the

thickness and 1ift dipoles respectively.
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3. THE ACOUSTIC GREEN'S FUNCTION FOR SOURCES NEAR THE TRAILING
EDGE

To evaluate the integrals (2.15), (2.16) it is necessary to
determine Q;(x), y2(y), whose functional forms are dependent on
the precise geometrical configuration of the airfoil. Attention
is confined to aerodynamic sources Q(y,t) near the trailing edge,
in the vicinity of which the upper surface of the airfoil is
assumed to have the following simple representation:

o(x;) = sx;/(x;-d), (x; <0, d << 2a) , (3.1)
so that o(x;) = s far upstream of the edge. As x; + 0,

o(x,) = =ex,, e =s/d, (3.2)
which implies that the included angle @ = ¢ when ¢ << 1.

3.1 Evaluation of Y;(x)

In the first instance we assume ¢ << 1, and introduce the
expansion

Yz(i) = oYz(i) + le(i) + ceey (3.3)

where successive terms nY2 are formally of order e". Thus oY2 is
the velocity potential of incompressible flow at unit speed in
the xz-direction when the airfoil is replaced by the flat strip
-2a < x,<0, x, = 0, and may be expressed in the form [11,
Chapter 6)

JYa(x) = Re[-i[(z+a)? - a2]}/?} ,
(3.4)

z =x, + :lx2 .

AR TN
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In the neighborhood of the trailing edge, where |z| ~ 0(d) << a,
this becomes

JY2(x) = Re{-i(2az)V/?} | (3.5)

The leading order, finite-thickness correction is contained
in ;¥,(x) of (3.3). Near the trailing edge, and to first order
in e, the rigid surface condition, 3Y,/3x = 0 on the airfoil,
may therefore be taken in the form

Y, ( ) aoyz) s
B ol(X ? X ¢ X
1
ax, ax, ax, 1 2

+0 ,

> (3.6)

=0 '] x<0,x=-0.

2 /
Within the fluid Y,(x) satisfies the two-dimensional
Laplace egquation

1

{32/3x2 + 32/3x%},¥, =0, (3.7)

which may be solved by introducing the elementary solution

1 1/2 1 2
G (x)¢X,iY,0y¥,) = 5= Re{ln(z / -z /2y 4+ 1n(2Y +*z°1/2)} '
(3.8)
of the problem
{az/ax§ + az/axg}co = 8(x,~y,)8(x,~y,) , (3.9a)
3G /ax, = 0, x;, < 0, x, = %0 , (3.9b)
o
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where z, =y, + iy,, and the asterisk denotes the complex
conjugate. Multiply (3.7) by Go(xl,xz;yl,yz) and (3.9a) by
1Y2(x), interchange x and y, and integrate with respect to
Y,rY, over the region exterior to the half-plane y; < 0, y = 0
which is bounded by the circle ] : (y2 + yg)l/2 = R > d. Using
Green's theorem [9], this procedure enables ;Y, to be expressed
in terms of line integrals over the half-plane and over J . It
may be assumed that nYzfﬁ) does not grow as rapidly as oyl(i) ~
o(R1/2) as R + », This implies that the representation of
1Y2(x) does not involve any of the eigenfunctions of the half-
plane (which are proportional to re{-izm+1/2}, m > 0, and have
vanishing normal derivative on x, < 0, x, = 0), and that the
contribution from ] is therefore null. Ve then find that ,Y,
is given by the particular integral

0 3 Y
) o2
lyz(i) = {. a—y1 (a(yl) T (Yl '+0)) Go(x1,x27y1,+0)dy1

. (3.10)
This integral is evaluated by making use of (3.1), (3.5),

following which one concludes that, near the trailing edge of the
airfoil,

Yz(i)

oYl(ﬁ) + le(ﬁ)

(2a8)1/2re{w, ()} . (3.11)

where,

172 ie ;l/zlnc - (cl/z-l)

€
o (g-1) 4 (z-» '

wy(z) = -ig
(3.12)
t =2/d = (x; + ix,)/4 .
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When € is small this result provides a uniformly valid
approximation to Y,(x) except possibly in the immediate vicinity
of the trailing edge. At such points (g ~ 0) it is more
appropriate to adopt the renormalized representation:

H Z4&Z WE R’ B

172

walg) = =ig7/“{1 + (e/4%)1lng + ic/4} - e/4

. —ig(1%e/2m)/2 0e/8 _ 4y (3.13)

The adequacy of the above approximations can be assessed by
recalling that Y,(x) is the velocity potential of a hypothetical
flow past the airfoil in the xz-direction. It follows that
Im{w,(z)} should be constant on the airfoil. Clearly, (3.12),
(3.13) both imply that Im{w,(z)} = 0 on x; < 0, x = -0.
Furthermore, from (3.13), Im{wy(g)} = 0 also for arg g = n - %
' when |;| << 1, where

R &

- i.e., to leading order in e, Im{wa(g)} = 0 on x; = o(x;) in the
5; neighborhood of the sharp trailing edge. For larger values of
= |t| the actual airfoil profile (3.1) should coincide with that

defined by (3.12) in Im(gz) > 0. The extent of the agreement for

B B X

B R5s

® =¢e/(1 + ¢/20) , (3.14)

- e an

o

. < € =s/d = x/6 (§ = 30°) is illustrated in Figure 3. The solid
.. curve is the profile Im{w,(g)} = 0 computed from the approxima-

; Sﬁ tion (3.12). The dotted curve depicts the profile (3.1) of the

; trailing edge of the airfoil.

A L)

: ;: Actually, it will be argued below that (3.12), (3.13) give a

suitable first approximation when ¢ is as large as 2x/3 (9 =
90°), when they respectively become "outer" and "inner" repre-
sentations of Y,(x). Of course, the magnitude of the included )
angle @ must then be taken to be defined by (3.14), and the shape

.
]

t 2

o

1%

13 N
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defined by Im{w,(z)} = 0. In all such cases the upper surface has
a smooth profile similar to the solid curve in Figure 3, which
tends asymptotically to x, = s as x; + -e=,

5 ﬁ Report No. 6715 BBN Laboratories Incorporated

3

.I

\J

\J

\J

.

]

I

’ |
of the upper surface of the airfoil near the trailing edge is h
L

;

\J

2

'I

3.2 Evaluation of 0:(5) A

L In this case

- _
-

AL R

B B = s
8

* * * (3.15) E.E

¢, (x) = o¢1(i) + g (x) + ... 1

4

::ﬂ Vvthen € = 0 the airfoil degenerates into a plate of zero i
: ad thickness, and one deduces that 01 = 0. The leading order a
Er\ effect of finite thickness is contained in 1¢1(x), whose ﬁ

ﬁ functional form can be determined by the procedure described .

- above. However, since l(x) = x;, it is necessary to admit the ]

| Sﬂ possibility that the representat1on of 1¢1(x) includes the ;

eigenfunction C. Re(-1zl/2 ), C = constant, in addition to a ﬁ

' particular integral of the form (3.10) (in which 3 Y,/3y, is 2
replaced by aoyl/ayl = 1). The value of C is chosen to ensure ;

> that Y;(x) has the correct behavior as z » 0, i.e., to ensure :

R that Y;(x) describes the potential of flow past a wedge of @

- included angle 8. In this way one obtains .
" ?
* )

e Yy(x) = x; + 146;(x) t"

a g
= d Re{w,(z)} , (3.16) '

o s
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FIGURE 3. PROFPILES OF THE UPPER SURFACE OF THE TRAILING EDGE WHEN
N € = /6. =+ o o o o3 PROFILE DEFINED BY (3.1);
C : PROFILE DEFINED BY Im{w,(g)} = 0; — — — —:
PROFILE DEFINED BY Im{w,(g)} = O.
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As T + 0 this reduces to

w1(¢) = ‘(1+S/21)e18/2

. (3.18)
The dashed curve in Figure 3 illustrates (for x; < 0) the
profile of the upper surface of the airfoil, as defined by
Im{w, (¢)} = 0 for ¢ = »/6. This tends asymptotically to x, = s
as x; + ==, The differences between this and the actual profile
(3.1) are seen to be greater than for the analogous (solid) curve
for Y,(x), although they are not large enough to materially
affect the conclusions of the present investigation. The dashed
line in the Figure which approaches the edge from x; > 0, is the
dividing streamline of the potential Y;(x), and makes an angle
-8/2 with the positive x;-axis at the stagnation point x; = x, =
0.

As before, when ¢ is not small, equations (3.16), (3.17)
will be interpreted as outer and inner approximations to Y,(x)
for an airfoil whose actual profile is defined by Ih{wl(c)} =0
rather than by (3.1).
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'l i
4. NOISE PRODUCED BY TURBULENCE ON THE PRESSURE SIDE OF THE iy

4 AIRPOIL :
& Consider first the sound produced by boundary layer \
g turbulence convecting past the trailing edge in the region x, < 0 '
below the airfoil. The integrations with respect to y; in &

) (2.15), (2.16) may then be assumed to extend over the interval S
5‘1 (-=,=) without encountering the airfoil. ]
% 4.1 The Lift Dipole p,(x,t) "
A

: Using (3.11) in (2.16) we have ‘.";!
U
. 172 _iy(k)x, . |
pz(X2'h'U)/D° = (2ad) 4: I Q(y2'K11k3,w)Re{w2(co)} W)

X

x el(Kl-kl)yl dyl

v
a (4.1) Y
‘ where ¢ = (y; + iy,;)/d. To evaluate the y;-integral, we set ",
b - WU
o - ; “
BN a )
™ I(a) = | Re{wz(co)}e Y1 dy, ]
L 1, :
. = -2-{1'(a) + c.c.I'(=a)} , @ = K-k, , (4.2) :

-

e e
: :@ where, o
j' ® ia ;
X I'ta) = [ wy(g e Y1 ay , (4.3) 3
o o ::
and "c.c" denotes "complex conjugate.®™ 1I'(a) can be written as -

the following function theoretic contour integral:

L%

tiy,/d 3

2 W

I'(a) = ae®¥2 vyt e’ %o ar_, (4.4) 3

"+1Y2/d
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the path of integration in the ;o-plane being parallel to the
real axis at distance y,/d (<0).

According to equation (3.12) the integral (4.4) is formally
divergent. Since, however, the aerodynamic source Q(y,t) may be
assumed to vanish as y, + e, the value of the divergent integral
may be interpreted as a generalized function, as in classical
thin airfoil theory [12]). To do this the integral is expressed
as the derivative with respect to a of a convergent integral, as
follows:

w+iy,/d w,(z )eiud;od;
ay, 2 o o

I'(a) = -ie > f (4.5)
¢ -=+iy,/d o

The integrand is regular in the co-plane, except for the branch
point at ¢ = 0, and wa(g )/¢, + O as |co| + ®», Thus I'(a) = O
for a < 0 (and y, < 0). For a > 0 the integration contour may be
deformed onto a branch-cut extending from the origin to +i=, and
I'(a) can then be re-expressed in the forn

a(in)1/2e%Y2p, (aq)
G>0'
(ad)>/?

I'(a) =

Fz(X) = ] - CXf(X) ’

where

du

- 1/2 - 1/2 -
2ilnx) W 1/2e7Y 2i " w0 7

{ p+tix du -y J; u+ix

|
f(x) [ (1 +
"1/2{ "
(4.7)

which is readily evaluated numerically (or in terms of tabulated
functions for the first of the integrals on the right hand side;
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f
' see [13]). When I'(-a) is evaluated in the same way, we find

from (4.2) '?

acin /2 laly )

x) e 2 “

I(a) = 373 sgn(a)F, (ad) . (4.8) i

g_ 2(ad) e

. In obtaining this result use has been made of the "outer" §

‘: representation (3.12) of w,(z). It is evident from the E_{,
discussion of Section 3 that this is likely to be an adequate

@ approximation only if the principal contributions to the branch- ;:::

‘ cut integrals in (4.7) are not from the neighborhood of the :::.',:

ﬁ branch point y = 0, where the functional form of w,(z) is .:

determined by the geometry of airfoil at the sharp trailing edge. b |

. Thus (4.6) must cease to be valid when x = ad + o, in which case -1';

}S xf(x) becomes logarithmically large. In that limit (4.6) implies =§

that, provided ¢ + 0, ,.':::

i ie 2ilnx € 2

. Fz(x)=1+8—(l+ - )+H(2-ye-1n4), (4.9) ‘%

- t

A where v, = 0.577216..., is Euler's constant ([13], page 255). ‘a

! Now the correct behavior of Fy(x) as x + =, which takes BN

proper account of the behavior of w,(z) at the sharp edge of the ¢

'f:: airfoil, must be given by use of the asymptotic, "inner" approxi- ,

" mation (3.13) in the integrand of (4.5), which yields ;ﬂ

s P

F,(x) = (2/5/2)(1+1e/8)r (3/24e/8m)x "¢/ 47 (4.10) b

- 3

s in terms of the gamma function r(z) [13]. This reduces to (4.9) f
when expanded to first order in ¢, and use is made of formulae

«. given in Section 6.3.4 of reference [13]. For small values of ¢, ﬁ

(4.9), (4.10) are both well approximated in their respective ‘

:C: regions of validity by a

o ie 2ilnx € &

:5: Fp(x) = exp{-a— (1 + —'—-) + Ie (Z-Ye-lnal)}. (4.11) f

H."-:
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4
%4
i It follows that a uniformly valid approximation, which gives ',
) the correct behavior of F,(x) for small and large values of x is :
gé obtained by replacing l-exf(x) in (4.6) by exp {-exf(x)}. With .
this renormalization, equation (4.8) becomes e
. ;
d(ui)l/zzz(ud)e|°|yz ;.'
o I(a) = ’ (4.12) ;
R 2(aa) /2 3
ﬂ: !
fr where

2,(x) = sgn(x)F,(x) = sgn(x)exp{-exf(x)} , (4.13) iy

Eg v
so that Z,;(x) = x"€/4" as x + w, This is actually expected to be !.

ﬁ a good approximation for ¢ < 2n/3 (8 ¢ 90°). Indeed, the E
o exponent in (4.13) is then small except when x is large, and in %
\ that case the asymptotic result (4.10) is still well approximated &
& by (4.11) for such values of ¢, since Ir(z) is stationary in the 3]
neighborhood of z = 3/2, ;

552

-
1]
>

Using this representation for I(a) in (4.1), and taking the
inverse Fourier transform, we obtain for the lift-dipole

<R
P

component of the acoustic pressure ;
- L.
» \
% (ai/2m) /2 O(y, rK rky,w)2,{ (K, =k,)d} N
Pplxst) /oy = —5— 3/2 ?
. (Ky-ky) )
X .
ok R
) x exp{i[kex + v(k)xp-wt] + IKl-k1|y2}d2_l_<_dde1dy2, N
x, + + =, Y, < 0. (4.14) !_)
% .
v Wthen ¢ = 0, Z,(x) = sgn(x), and this expression reduces to that :::
. for a flat-plate airfoil of chord 2a. :;3
hY
)
;.‘\
“ 20
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It has already been noted (in Section 2) that, in the
acoustic far field, the dominant contribution to the integral
with respect to k in (4.14) is from the acoustic region k < |ko|,
whereas, as will be seen below, the important values of K; in the
integrand are associated with the hydrodynamic region K; ~ w/U >>
ko of the boundary layer wall pressure fluctuations. Accordingly
(4.14) may be further simplified to the form

(ai/2x)1/? / Q(y, Kyskg,w)Z,y{K,d}
k3/2

P2 (i't)/po =

x exp{i[kex + y(k)x, - wt] + |K,|y,}d2kdudK,dy, ,
X2¢+., Y2 <0 . (4.14)

4.2 The Thickness Dipole p,(x,t)

A similar analysis can be given for the simplification of the
integral representation (2.15) of p;(x;,k,w) by making use of the
formulae (3.17), (3.18) for w;(z). In this case one finds

C(id/ﬁ)l/z I klo(erxlrkgaw)Zl(Kld)

3/2

pPi(x,t) /o, = R
Y 1

x exp{i[kex + y(k)xp;-wt] + |K;|y,}d2kduwdK,dy, ,

where

- 1/2 -y
Z,(x) = -sgn(x){ 1l - % { :—+—§x— du

®

® -u
-(x/xi) /2 | - du} (4.16)
0 y + 1x

172

and z,(x) = x_ as x + =,
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i b
~ S. THE KUTTA CONDITION p
f:‘t The aeroacoustic source term Q(x,t) on the right of equation "
) (2.2) consists of two distinct and identifiable components. The g
! first involves vorticity w in the boundary layer which is convected
* into the trailing edge region from upstream. The second is ;::
;Ij associated with vorticity which is generated at the surface of the :"
o airfoil in the vicinity of the edge (and subsequently shed into the '
:? wake) in response to the unsteady forcing by the incident boundary -..
* layer disturbances. 1In this section the properties of the shed )
- vorticity will be estimated on the basis of high Reynolds number, ""
;‘.'. unsteady airfoil theory, i.e., the Kutta condition will be imposed, !

which requires that the motion induced by the shed vorticity at the ol

i;’ trailing edge is such as to remove the singularities in pressure Eﬁ
and velocity that would otherwise be predicted to occur there in :

'ﬁ ideal, inviscid flow. This procedure is believed to be valid :
provided the reduced fregquency ws/U is not too large [14]. 3

= ;-:
. 5.1 The Green's Function G(x,y,t,r) for x Near the Trailing Edge -

Consider first the motion induced near the trailing edge by

o a single Fourier component a(xz,Kl,k3,m)ei(5'.’£‘“’t), say, of the \
j-;: boundary layer disturbances in x, < 0 which are incident on the ::
- edge from upstream. VWhen the ultimate objective is the ;3
N determination of the acoustic radiation by use of the dipole 2
- formulae (4.14), (4.15), attention may be confined to wavenumbers 5.';
~ K = (K;,0,k3), where k3 lies in the acoustic domain |k3| < [k]|. §
',:;', In that case the flow produced near the edge by this source is Iy
essentially two-dimensional, inasmuch as the length scale of 2

:-" variation in the spanwise direction is large relative to all EQ
! other scales of the flow. In order to calculate the velocity :','\

o near the edge from the integral representation (2.5) of the

. stagnation enthalpy, it is evidently sufficient to determine the oy
functional form of the Green's function from the reduced equation .
¥ 2
" 22 !
:
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{32/0x2 + 32/3x}}G = -8(x-y)é(t-1) , (5.1)

wherein 32G/c23t? is neglected because retarded time effects are
negligible in the vicinity of the edge, i.e., the flow may be
taken to be locally incompressible and two-dimensional.

To solve (5.1), set
G(x,y,t,t) = -{Go(xl,xz;yl,yz)+G1(x1,x27Y1rY2)+...}6(xa-y3)6(t-r),

(5.2)
where Gogis the potential of incompressible flow produced by the
line source 6(x;-y;)8(x,-y,) in the presence of the rigid half-
plane x; < 0, x, = 0 (as defined by (3.8)), and G, is an 0O(e)
correction which accounts for the leading order effects of finite
thickness of the airfoil. G, satisfies the homogeneous Laplace
equation and is subject to a boundary condition of the form (3.6),

nanely
3Gy 3 SGO 0
(5.3)
= 0 ' Xl < 0’ X2 = -0 O

It follows by the method of Section 3, equation (3.10), that

ie I. [ 1 . 1 ] ax
2 ’
% % [A1/2+ici/2] [Al/z-i*ci/z] (x+1)(:1/2-ix1/2)

(5.4)

= Re

....................
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where ¢t = (x;+ix,;)/d, to = (yy+iy2)/d. This integral is readily
evaluated for arbitrary values of g, but to apply the Kutta
condition only the behavior near the trailing edge ¢ = 0 is
required. Expanding (5.4) for small values of ¢, and combining the
result with the corresponding expansion of Gor one finds for

e/t << 1,

G(_’(_'X'tc'f ) | = %? 6(x3-Y3 Y6 (t-1)

1/2 1 ie(cl/z-l) 1ng .

x Relg —_ {1 -——2 _  +E& ding +—2V ¢

172 4(z -1) 4 (z -1) 4

Co (o] o]
1/2
ie(*g / -1) Ing*

1 1 (o} € (o} ie
- + + — d1lng + ————— 7+ —
*(01/2 4(5;-1) 4n (g*-1) 4

(5.5)

This “outer"™ approximation can be renormalized (as in Section 3) in
the limit as ¢ + 0, yielding

G(Xsy,t,t) = 3 (x3-y3)8(t-1)

x |x§ + §|(1+s/2n)/4sin{§[l + %;) + %}Re{wg(co)} ’ (5.6)
where,
ie(g 1/2--1) € Ing
w () =—ml1- o . o
g ‘o 172 4(¢ _-1) da{z -1 ('
‘o o lo)
(5.7)

£ = arg(zg) .

Observe that 3G/3t = 0 for € = =n,x(l=-e/2%)/(1+e/2x), i.e., on the
faces of the wedge shaped tip of the airfoil, as required.
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$S.2 Induced Flow Near the Edge

&

Inserting (5.6) into (2.5), with Q(y,t) replaced by

a(Yz ¢K2,k3 ,m)ei(E'X"“)

= -

integrating over all values of K;, and denoting by Bq the
corresponding unsteady stagnation enthalpy, we find that near the
edge

7

w

& € €
q 2 sxn{E(I + 3;) + z}e

- Eﬁﬂ

{0 . iK,y,
A x f q(yz,Kl,ka,w)Re{wg(co)}e dyldyzdxl. (5.8)
E As previously, the integration with respect to y; can be simplified
by transformation into a contour integral in the t,-Plane, leading
K X to
b
$ d (1+e/2n)/4 . (E € €, i(kax,~wt)
242
| ! B = 5 | x2+x2 | s1n{5 (1 + )+ z}e 373
|
- ) «
i ::_ x f ?(Kld)q(yzﬂ(lfks,w)e' 1|y2dy2dKl ’ (y2 < 0),
] (5.9)
' where,
')
-3 1/2 ie 2i i
f - F(x) = -sgn(x){n/ix) / {1 -5[1+ T [1nx+y_+1n4]] + -25 £(x)] ,
N,
2 (5.10)
-
v and f(x) is defined as in (4.7).
By
n X
o~ 25 2;
-
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For fixed ¢, the term in the brace brackets of (5.10) becomes
unbounded as x = K;d + «, This occurs because the integral with
respect to y; is then dominated by the behavior of wg(;o) near the
sharp edge to = 0 of the airfoil. The correct behavior is obtained
by use of an "inner" representation of wg(;o) as a function of Lo
By this means one finds, by the procedure justified in Section 3,
that the following exponential renormalization of J(x) is valid for
all values of x

_ =r/1) %sgn(x)
x(l-e/2ﬂ)/2

Fx) « exp{<—(y_+1n4) +i§-[f(x)-1/4]} . (5.11)
4 e 2
Equations (5.9), (5.11) determine the fluid motion near the
sharp trailing edge of the airfoil. Vorticity in x, < 0 produces a
disturbance Bq = -a¢q/at, say, in x2 > 0, where ¢q is a velocity
potential. It follows from (5.9) that the corresponding velocity

-(1-e/27)/4

becomes singular like |x§+x§| at the edge.

5.3 The Shed Vorticity

According to the unsteady Kutta condition sufficient vorticity
is in practice shed from the edge to remove this singular behavior.
It will be assumed that the shed vorticity convects downstream in
the plane x; = 0 at velocity Ug, say. Let as(x2'§'”)' K =
(K;,0,k3), denote the Fourier transform of the equivalent
hydroacoustic source due to the shed vorticity, so that, by the
second of equations (2.2), we can write

Qg (xz /Kew) = 3%;{N(k3.w)6(xz)6(K1-w/Us)} ' (5.12)

where N(kj3,0) is to be determined.

Observe that, since 3G/3y, = 0 (i.e., Re{awg/ayz} = 0) on the
pressure side y; < 0, y, = -0 of the airfoil, the integral (2.5)
which defines the stagnation enthalpy field B;, say, produced by

P
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T
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.y re W A

the shed vorticity, may be assumed to extend over the range X
—= < y; < +=, It follows that the behavior of By near the edge is %
given by an integral of the form (5.9) for each ks3,w, and, '
therefore, that the Kutta condition will be fulfilled provided

-y v e

=l ek W KR R

J {;!(Yzlxlvksv‘") + as(erxllkarU)} 3(K1d)elxxly2dY2dK1 = 0.
(5.13) g

On introducing (5.12), this implies that

- -1
Juru_| Fwd/vu)

- K :

224

N(k3 'w)

(5.14)

Hence, in using (4.14), (4.15) to calculate the 1lift and
thickness dipole radiation fields produced by turbulent flow past

B 55

the trailing edge on the pressure side of the airfoil, one nust
take :

Fo. 2

Q(x2'K1lk3lm) = Q(xzrxlvkslm) + 4

Z

>

s R R,

5(X2)6(K1-m/u ) N '
: '
Xy { IKII?ZKId)S f Q(Y2'K1k3,w) g(Kd)e'K,YZdyidg .

(5.15)

Py
»

A

where a(xz,ﬁ.w) is the Fourier transform of the hydroacoustic
sources in the boundary layer (defined as in (2.2)) which are

¥
Pl
rY fFr e .

convected into the trailing edge region from upstream, and the
second term on the right hand side accounts for the influence of
the shed vorticity.
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6. THE RADIATED SOUND

6.1 The Acoustic Pressure Spectra

Using the representation (5.15) in equation (4.14) for the
lift dipole, we obtain

) (ai/2:)1/2 q(yz,Rl,ka'w)Zz{Kld}

4 3/2
Kl/

( K, )3/2 Z,(wd/U ) F(Kd)
x {1 =
w/U_ 2, (K)d) Flwd/U_)

x exp{ilkex + y(k)x; - wt] + |K1|y2}d25dde1dy2,

where the second term in the brace brackets of the integrand

corresponds to the sound produced by the shed vorticity, and should
be omitted when the Kutta condition is not applied.

The frequency spectrum ¢,(w), say, of the acoustic pressure
associated with turbulent boundary layer flow of finite spanwise

extent ¢t (which may be assumed to straddle the origin of
coordinates, as in Figure 4) may now be determined. At the far
field point x, ¢,;(w) satisfies

<pf(x,t)> = [ ¢,(w)du ,

where the angle brackets < > denote an ensemble average. It will
be assumed that the density q(x,t) of the hydroacoustic sources in
X2 < 0 which are convected into the trailing edge region from
upstream is a stationary random function of x;,x,;, and t, such that

<Q(x,K,0)q (X§,K*y6')> = S(x2,%X3:K,w)6(K-K')6(w=u') , (6.3)
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- -
1\«3%‘ L

-,
b o

where S(xz,x3:K,w) is the cross-spectral density of the hydro-
acoustic sources [15]. This hypothesis is consistent with the
assumption that the boundary layer sources are convected past the

A 5k
-—Z2r

."
trailing edge in an essentially frozen configuration. The %i
integration in (6.1) with respect to k;,k; may be evaluated é
asymptotically as |5| + o (e.g., by the method of stationary &?
ﬁ phase), following which one finds 'ﬁ
atk2cos?e [
¢, (w) = S(y,,y):K,,k sinesin¢,w)exp{|K,[(y,+y)) Y
a 2 16|_§|5 I 27210, ! ” 1| 2*Y3)} 3:.-‘
l‘|‘»
B
ﬁ Ky 3/2 2,(wd/U_) FK;d)|2 |25(K;8)|2 o
x |1 = (—7—) —(—-d')—gmrys T dK,dy,dy3 .
w US 22 Kl w s 1 !

o (6.4)
Fh
where (|§|'6.¢) are the spherical polar coordinates of the far oy

field observer position x illustrated in Figure 4. The linear

S

dependence of this result on cos2e is characteristic of the

[ ¢
2’
«

radiation field of a dipole orientated in the x,-direction.

-~ w
‘o, )
> )
A similar calculation starting from equation (4.15) for the !
! thickness dipole yields the following expression for the corres- B
ponding frequency spectrum ¢;(w): ~
= de? 2 :;;
wY tde‘cos‘y . . ,
- ¢, (w) = STIFICE )] S(yzlyé;Kl.kos1n951n¢,w)exp{|K1|(y2+y5)} 3
fe \
- o
~ o K, )3/2 Z) (wd/U ) FKd)|2 |2, (K, d)|2 I o
x - — K
N w/U_ z,(K,d) F(wd/U) IAE 19Y2%Y2 v 3
~ b2
(6.5) )
“ }F
f; where ¢ is the angle between the observer direction x and the Ry
positive x;-axis. :ﬁ
g <. e
t.
o %
% &
3
Y
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Radiation
Direction

FIGURE 4. COORDINATES DEFINING THE RADIATION INTO THE FAR FIELD.

Note that, the radiation fields p;(x,t), p2(x,t) are not
statistically independent, and the spectrum of the net field
pP1+p2 is not, therefore, equal to ¢;(w) + ¢2(w). However, it will
be seen below that the thickness dipole is generally negligible
except possibly at 6 = »/2, i.e., in planes parallel to the mean
flow, where ¢, is null.
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) .
6.2 The Boundary Layer Turbulence o

" 24
3 At distances far upstream of the trailing edge of the airfoil, :
the surface pressure fluctuations can be expressed simply in terms et

" of the hydroacoustic source density q(x,t). If P_(K,w) denotes the N,
P ¥
‘ wavenumber-frequency spectrum of the surface pressures [16], then :-_;-
< for the plane surface x; = -0, P_(K,w) and S(x,,x3:K,w) are found "
& to be related by i,
= - p2(1 - U K /w)2 0 ' N
., o(_:w) = 'Y(K)lz {O S(Y2'Y2r§rw) \:E:i.
5 7]
) Nt
x exp{=i[v(K)y, = v*(K)yj}]}dy,dy} , (6.6) %

.J )
: .,
* where U, is the mean flow speed (in the x;-direction) just outside :
)

i the viscous sublayer (see, e.g., [4]). In this result the cross-

spectrum S(y,,y3,K,w) may be identified with that appearing in the .,Q.

" representations (6.4), (6.5) of the acoustic spectra provided the '/‘:C
[RS 1
D boundary layer turbulence convects past the trailing in an by
‘ : Y . f:
. essentially frozen pattern. This will be assumed to be the case. 5'
. > o
. Now it is known [16] that Po(_lj,w) is sharply peaked in the bt
;{:’ neighborhood of the "convective ridge" centered on K; = w/Uc, Ky = :';:'S
% 0, where U. is a convection velocity which is typically equal to N
. 70% of the main stream velocity U, and varies slowly with ;
o frequency. In these circumstances (6.6) implies that :
. 0 e
LR . + ] *
= I S(Yz'Yi:KukOSmesinhw)e'Kl|(Yz y"’)dedyi 3
(A - b :
2 |K,|2P (K, ,k sinesine,w) |K, |2P (K,,0,0) 2
3 117F IR ek & R R N (6.7) o
2(] = 2 Y W - 7 ! . N

pe (1 = U K /w) pe (1 - U K /w) o
J.', .""
L b
. N
: A
N

X .
' 31 b
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and equation (6.4) for ¢,(w) becomes:

atk2cos?¢ Po(Klpopm)

) = TeTR . T -Uurx/eiZ

. K, )3/2 2,(wd/U_) F(K d)|2 [2,(K )2
w/U_ 2, (K;9) F(wd/U)) N

dK, . (6.8)

Z, and Fare slowly varying functions of their arguments, so that
the value of this integral may be approximated by setting K; = m/Uc
in all terms of the integrand except Po(Kl'o'“)/lxll' leading to

atk2cos?¢g

o
0,(v) = e[ |exp{-2¢ (wa/v )£ (wd/v )} |

)(l+e/4n)

1-(U /U, exp{e [wd/U_+i/2)f (wd/U_ ) - elwd/U_+i/2]f(wd/U )}

(1 -u, /u.)

x

where use has been made of (4.7), (4.13), and (5.11).

The value of the remaining integral in this result may be
estimated by making use of Chase's [16) empirical formula for
PO(E.w), which is valid in the vicinity of the convective domain:

Cmpévixf
P (Kl,o,w) =
o

: (6.10)
[(w-0_K,)2/(hv )2 + K3+(b8)=2]/2

where v« is the friction velocity, § the boundary layer thick-

ness, and the remaining parameters are given by
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' L
a;; b=0.75, C_=0.1553, h =3 . (6.11) o
¥ m bt
l.-
&_\
' Using this in (6.9), we finally obtain
- s._';
‘-*“
2 2 211/2 3 )
& c2¢, (w) (th/12)(Uc/U)cos e[1+(hv*/Uc) ] (w8/U ) R
Pal] o
" pZviUs (at/[x]?) T(ua/ucﬁ + (1+(hv*/Uc)2)/b2]2 P
3
_ x |exp{-2e(wd/U_ )£ (ud/U_)}| %
R )
a (1+e/4n) 2 5
1-(u /v ) "7 F exp{e [wd/U_+i/2]£(wd/U_) - elwd/U_+i/2]f(wd/U )} ™
Wy x — - !
‘::: (1 UO/UC) .l.:;
l“»
4 (6.12) d;:
Vhen € = 0 this result reduces to the spectrum of the lift dipole
. when the airfoil has zero thickness. A‘:
." .n.\'
= Y
An analogous calculation leads to the following explicit ,,.Q
! representation of the spectrum (6.5) of the thickness dipole: )
- 3 2 1/2 3 o
- - c2e,(w) € (th/24)(s/a)(UC/U)cos \p[1+(hv*/Uc)2] (w8/0 ) N
o) = :\"
p2viUs (at/|x[2) [(w6/U )2 + (1 + (hv, /U )2)/b2]?2 v
l ° - ° c e,
&
A
2 - 2 e
:: . |21(md/Uc)| 1=(0. /0 )1+€/4“ ] exp{(ie/Z)[f(ud/Uc) f(ud/Us)]} o
~ (1-0_/U _)? s’ ¢ 2, (wd/U_)/2,(wd/U0_) ! X
o’"c 12 c'/41 s!! ®
]
2 (6.13) N
iy "
In applying these formulae the value of ¢ is determined in E:r
e terms of the included ® of the trailing edge by the following
L
form of (3.14):
."
%

-l
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€ =98/(1-8/2x) (6.14)

6.3 Numerical Results

These formulae will now be used to illustrate the predicted
influence of trailing edge beveling on the radiated sound.
Consider first the acoustic pressure spectrum of the lift dipole,
given by (6.12). It is necessary to specify the convection
velocities Uysr Ugsy Uo. 1In applications it is often the
relatively high frequency range wé/U >> 1 that is of interest.
In a first approximation the shed vorticity might then be
expected to convect downstream at a velocity equal to the mean
velocity in the boundary layer just outside the viscous sublayer
(= 0.7v,), where vorticity generation occurs. This hypothesis
will be adopted in the absence of reliable experimental data to
the contrary. Since, typically, v« = 0.04U, we shall take Ug =
Uo = 7ve = 0.25U (see [17], page 629). The convection velocity
of disturbances in the main body of the boundary layer will be
taken to be given by U, = 0.7U.

Viith these qualifications, the predicted variations of the
lift dipole spectrum 10.loglo{c202(w)/pgvkua(a£|5|2)cosze} (dB)
with frequency wé/U, for turbulence on the pressure side of the
airfoil, are depicted in Figures 5(a), (b) respectively for §/s =
0.1, 1. The different curves in these figures are for trailing
edges of included angles @ = 0°, 30°, 60°, and 90°. When § = 0
the airfoil is flat. 1Increasing the value of @ reduces the
intensity of the radiation, especially at the higher frequencies.
In the latter case, the flow noise diffraction mechanism is
dominated by the geometry of the tip of the airfoil. When wé/U is
small predictions for @ # 0 do not depart significantly from the
case of a flat airfoil. 1It is likely, therefore, that, for
moderate values of ¢, the correction to the flat plate results
are given to a good approximation by replacing the terms in ¢ in
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[

(6.12) by their respective asymptotic values as w§/U + «, 1In “
that limit (6.12) becomes

w e ¥ & B S AN W W W W W W " W
[ Y @2 R
oo e ) B

c202 (w) \ ,11/2
' PéVtUG(a‘/lilz) = (th/12)(Uc/U)cos e[1+(hv*/Uc) ] L
- o
y (ec/s)e/Zw( 6/U )3 €/2n 1_(Us/uc)1+s/21r 2 -4
: * (@870 77+ [T+¥Thv, /017 ]/67]? T-0_/0 + (6.15) :
F
{ - ‘
~ Comparisons of predictions of this formula with the results in E
> Figure 5 indicate that the error is less than about 0.25 dB even K
o for ¢ as large as 2n/3 (8 = 90°) when §/s = 0.1. When 6/s = 1, .
. the errors at 8 = 60°, 90° exceed 0.5 dB only for wé/U < E:
;: 2,6 respectively. 1In view of this it is perhaps of interest to ?
] note the corresponding asymptotic form of the more general ;
B expression (6.8): '{
-
¢r(w) = é
/2x l+e/21 |2 ’
5 alkgcosze(e/s)e = P_(K;,0,0) |1-(U_K,/u) i
16'_{'2 {c 'K1|1+€/2ﬂ 1 - UoKl/w K,y ':
= (6.16) -3
- The proportionality exhibited in (6.13) of the spectrum ¢, (w) 3
of the thickness dipole on €3 indicates that the contribution to ;
- the radjiation fror this source is small except possibly at the i
y larger values of the included angle 8. The ratio s/a of the :
J airfoil thickness to the semi-chord is of order 0.1 - 0.2 in z
al typical experimental configurations [5]. The value of Zl(wd/Uc) 3
" decreases rapidly with increasing frequency, and this further ~
N reduces the significance of ¢,(w) except when §/s is large (i.e., I
i for boundary layer flows whose thickness is comparable to the %
N

L
'y
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thickness of the airfoil). The solid curves in Figure 6
illustrate the variation with wé/U of

10.loglo{c201(w)/pgvzus(az/|i|2)coszw} (dB)

for 8§/s =1, s/a = 0.15, & = 30°, 60°, 90°, and when the
remaining flow parameters assume values given previously. For
comparison, the dashed curve is the ® = 90° lift dipole spectrum
of Figure 5(b).\ These results suggest that the thickness dipole
is negligible except, perhaps, in radiation directions parallel
to the airfoil, and when ® = 90°.

[ | | I

—-20.0 — —

-30.0

—40.0

PRESSURE SPECTRUM (dB}

-50.0

| I | ]

1 10 YT 0

FIGURE 5(a). THE SPECTRUM lo.log,o{czoz(u)/pgvmc(az/lﬂz)cosze}
OF THE LIFT DIPOLE FOR DIFFERENT VALUES OF THE
INCLUDED ANGLE @, AND FOR §/s = 0.1.
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s =5

7. DISCUSSION OF THE GENERAL CASE

7.1 Turbulence on the Suction Surface

A

All of the detailed predictions given in Section 6 are for
trailing edge noise produced by turbulent flow in the boundary
layer on the lower, "pressure" side of the airfoil. 1If the

-

P
.

o included angle ® does not exceed about 30° mean flow separation

'E from the suction surface does not occur [5]. 1In that case, since

- the effect on the radiation of the finite included angle o is

;j important only at the higher frequencies, it can be shown that
the formulae of Section 6 remain valid for turbulence convecting

2'2 past the edge on the suction side of the airfoil. Vhen separa-
tion occurs (see Figure 1), turbulent eddies in the suction

4 surface boundary layer which are convected into the trailing edge

R region from upstream are displaced from the proximity of the

- edge. It follows that, except when ws/U << 1, their near field

i pressure fluctuations are exponentially small at the edge. Only

- the very low frequency, incident boundary layer disturbances can

ﬁ then interact effectively with the trailing edge, and produce
sound essentially as for an airfoil of zero thickness.

! Turbuience fluctuations within the separated region will, of

o course, produce high frequency sound by interacting with the

N edge. 1f, as seems likely, this turbulence is statistically

, independent of the boundary layer turbulence on the pressure

g side, its contribution to the spectrum of the 1lift dipole

- radiation may be estimated from the formula

L P} () =

P77

€/2x - 1+e/2n

atk2cos26(e/s) P _(K,,0,0) [1-(U_K,/u)
‘ o i s s dK. .
é 16]x]? . 1+e/2x 1-U K, /w 1
g' (7.1)
[ 39
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o,
provided U, denotes the mean flow velocity at the edge of the ;
o viscous sublayer. In this expression Ps(Kl,O,m) denotes a local iy
Ry representation of the wall pressure spectrum on the suction side .'.
of the airfoil within the separated zone. 1If it is permissible e
g to assume that the structure of small scale turbulence eddies ;
does not vary significantly in the mean flow direction, the value "
Ei“: of P_(K,,0,w) may be estimated from measurements of wall pressure
at distances exceeding ~ 1/K; upstream of the trailing edge, at =
ﬁ which points the influence on the hydrodynamic pressure field of ‘}
diffraction at the edge should be small (c.f., [4])). In addi- P
5 tion, over a range of intermediate to large mean flow Reynolds ‘.!
E number, there will be a pronounced contribution to Pg in the ,
- neighborhood of ws/U = 0.5, K; = “’/Uc corresponding to surface ol
y; pressure fluctuations caused by large scale, gquasiperiodic vortex »
shedding. 1In this low frequency case it is necessary to set ¢ = '.:
i 0 when estimating the radiation from (7.1), or make use of the ’
general formula (6.8). v"\.\
!
= 7.2 Influence of Non-Compactness ‘«'
!, It is of interest to note the modifications of the results
of this paper when the airfoil has non-compact chord (i.e., for 5:{
'_r{- ko@ >> 1). Attention is confined to the analog of the lift :E:
dipole spectrum ¢,(w). The appropriate form of the Green's :
;—i function can be derived from the results of Section 3 and fronm ’{:
o the Appendix of reference [8), following which one finds that the '.}x
~ principal component of the trailing edge noise is given by k:
;‘\{ AL
- -— e/2n 2
« . o) - t|k_|sin(a)sin2(8/2) (e/s) 2
v Z
- 2 Tz %
t‘: - PO(K]'O,w) 1-(UsKl/m)1ﬂ:/2" i‘i
- * {. |K1‘1+e/21r I'onx/“’ dky (7.2) ' '
..: \f:
: ]
; r - ;
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where o is the angle between the observer direction x and

the x3-axis (see Figure 7), and B = tan—!(x,/x;). Vhen ¢ = 0,
this expression is equivalent to that given in reference [4)
(equation (71) with ¢, identified with Sy/2 and P, with any,

and with the neglect of finite Mach number terms) for a half-
plane of infinitesimal thickness. 1In particular, the specific
formula (6.15), which is applicable for turbulence on the
pressure side of the airfoil, and also on the suction side in the
absence of separation, becomes:

coz(m)

=
pZvie(s2/]x[?)

(C_h/3n)sin(a)sin?(8/2)[1 + (hv./ucﬁ]]/2

- 2
(es/s)E/z"(ws/uc)z €/2n 1-(us/uc)1+e/2"

— _ :
[(ws/0_)2 + (1+(hv,/u_)2)/b2 1-u./0,

(7.3)

The principal difference between (7.1), (7.2) is the reduction
from guadratic to linear dependence of ¢,(w) on ko. This implies
that the overall intensity of the trailing edge noise is propor-
tional to poU3H2 for a non-compact airfoil, as opposed to

p°U3H3 for the compact airfoil [1].
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FIGURE 7. COORDINATES DEFINING THE RADIATION FROM AN AIRFOIL OF
NON-COMPACT CHORD.
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8. CONCLUSION

There are two principal components of the sound produced by
low Mach number turbulent flow over a beveled, or asymmetrically
rounded, trailing edge. These can be identified with hydro-
acoustic sources of dipole type associated with the fluctuations
in the 1ift and with the finite thickness of the airfoil. The
influence of beveling on the lift dipole is significant only at
sufficiently high frequency that the trailing edge region of the
airfoil can be regarded as a straight-sided wedge over distances
of the order of the length scale of the turbulence. 1In that

" case, the spectrum of the dipole radiation falls below that for a

trailing edge of zero included angle (i.e., for a thin plate
airfoil) by an amount which increases progressively with fre-
quency. The radiation generated by the thickness dipole is
absent in conventional treatments of trailing edge noise. For an
airfoil of compact chord its intensity varies approximately as
the cube of the included angle and linearly as the airfoil thick-
ness, and is generally negligible except possibly at low frequen-
cies, for trailing edges of large included angle, and in radia-
tion directions lying in the mean plane of the airfoil.

43

-
- -
-~

e S 5% ST Do)

TN

YW Pr Y Yy

YT YT

A

o
”
>
.
)
)
Mo
.
r’\
»
&
»
'
N

",

N

{J

N

)



3
-
-
-

TR 0 A BN 6 8 a At st A VA
1 L -

B
.l

.l

g Report No. 6715 BBN Laboratories Incorporated g

7

fi REFERENCES 04

. i

Sﬁ l. J.E. Ffowcs Williams and L.H. Hall 1970 J. Fluid MNech. 40, ey

‘ 657-670. Aerodynamic sound generation by turbulent flow W]
- near a scattering half-plane.

d :'.t
R 2. D.M. Chase 1972 J. Acoust. Soc. Am. 52, 1011-1023. Sound N
- radiated by turbulent flow off a rigid half-plane as o
['t"’} obtained from a wavevector spectrum of hydrodynamic ?_i
iy pressure. ry

3. K.I. Chandiramani 1974 J. Acoust. Soc. Am. 55, 19-29. ]
g Diffraction of evanescent waves with applications to '.Qr
aerodynamically scattered sound and radiation from unbaffled o~
:ﬁ plates. ";
r
S 4. M.S. Howe 1978 J. Sound Vib. 61, 437-465. A review of the »
theory of trailing edge noise. e,
"l l{ 0
i .
.";: 5. W.K. Blake 1983 Excitation of plates and hydrofoils by N
trailing edge flows. In Turbulence-Induced Vibrations and j)\.
i Noise of Structures (ed. M.M. Sevik). New York: ASHE.
[ ]
6. W.K. Blake 1984 Aero-Hydroacoustics for Ships. David Taylor o
Naval Ship Research and Development Center Report No. v
W i
oy 84/010. TN
& N
7. M.S. Howe 1979 Diffraction of Evanescent Waves by a Wedge. )
! BBN Technical Memorandum No. 509. B
. -
8. M.S. Howe 1975 J. Fluid Mech. 71, 625-673. Contributions to 7l
¥ the theory of aerodynamic sound, with application to excess )
N je: noise and the theory of the flute. :-{'
[ '?.
9. J.A. Stratton 1941 Electromagnetic Theory. New York: o
Py McGraw-Hill. ]
¢ : Ry
10. N. Curle 1955 Proc. Roy. Soc. Lond. A231, 505-514. The o
7, infiuence of solid boundaries upon aerodynamic sound. ,’.N
"’ NG
11. L.M. Milne-Thomson 1968 Theoretical Hydrodynamics (5th
- edition). London: MacMillan. .‘-5{
N ~y
’ 12. Th. von Karman and W.R. Sears 1938 J. Aero. Sciences 5, 379- N
_ 390. Airfoil theory for non-uniform motion. :_::
) '~
\]
LM
::. -\."; )

R A



D Y A s o o f oy i o A o 0 F A A

RN N N T N TS A A.h\_.'r_;- L "L L LN '- " T AT "-."_\ .o




